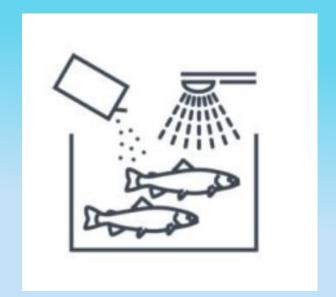
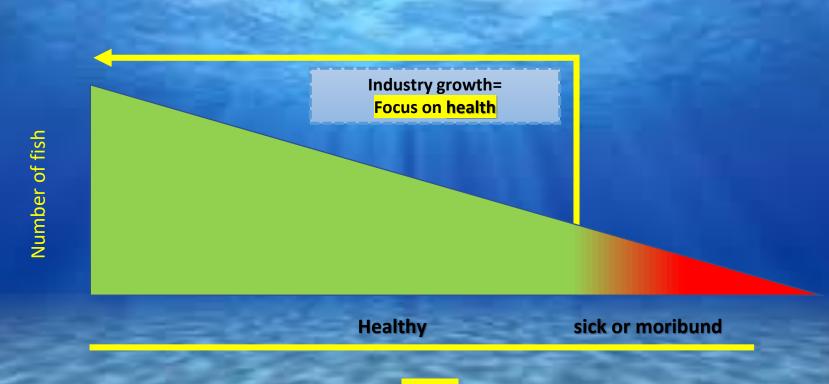



GILL HEALTH FROM ANALOG DESCRIPTIONS TO DIGITAL QUANTIFICATION: TOWARDS STANDARDS


K. PITTMAN^{1,2}, G. MERKIN², M. OKUBAMICHAEL²

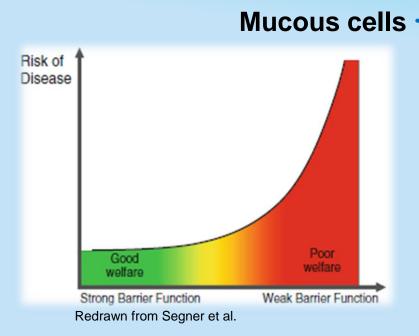
1. DEPT. OF BIOSCIENCES, UNIV OF BERGEN, THORMØHLENSGATE 53B 2. QUANTIDOC AS, THORMØHLENSGATE 53B, BERGEN, NORWAY

CONTENT


- 1. CHANGING YOUR POINT OF VIEW
- 2. MULTIPLES SPECIES WITH 2-PART GILL MUCOSA
- 3. DON'T JUST COUNT
- 4. REQUIREMENTS OF STANDARDS
- 5. FISHMOM

How do you know your stock is <u>healthy</u>?

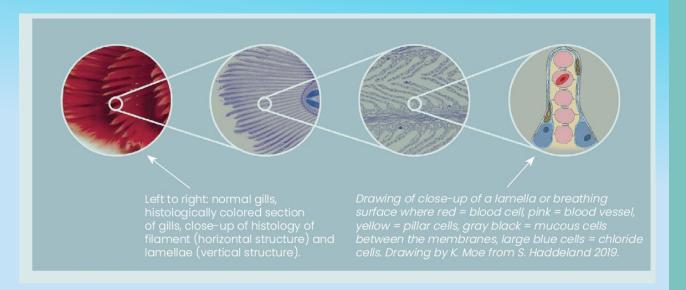
INDUSTRIAL ANIMAL PRODUCTION VS INDUSTRIAL FISH PRODUCTION



TIME

Veribarr™ designed as an industrially scalable metric for fish barrier health

MUCOSAL EPITHELIUM = SKIN, GILLS, GUTS = BARRIER FUNCTIONS

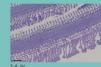


scales

Mucous barrier epithelium wraps over and around the scales, in guts and around gills - Nice layers, poor statistics

Good barriers = good health

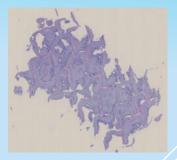
Gill lamellae and volumetric density of mucous cells


Gill breathing surfaces and the variation in mucous cell density.

0.1% mucous cell density Healthy and fine

Change your point of view by 90°

Tangential sections for Mucosal Mapping (Veribarr™) analyses = statistically robust results and *millions* of times more surface representation


Gill (lamellae, filament)

Fore gut

Dorsal hud

Hind gut

Quantitive Analysis
directly comparable across

- > Species
- > Tissue
- > Treatment
- > Time
- > System


Veribarr vs traditional histology

Comparison	Histological quantification of	Veribarr™ on mucous cells	
	mucous cells	(design-based stereology,	
		3D from 2D)	
Length or area	1-2 mm running length	1-2 cm ² surface area	
Unit of measure	Relative to existing structures	Universally applicable	
Orientation of	Very important	Not important	
section	X		
Standardization	- No standardized units	- Standardized reporting	
	- Not directly comparable across	- Comparable across treatment	
	treatment and organs	and organs	
Qualitative or	Qualitative and quantitative	Quantitative	
quantitative			
Method	Manual	Semi-automated	
Bias	Biased unless random rules applied	Unbiased	

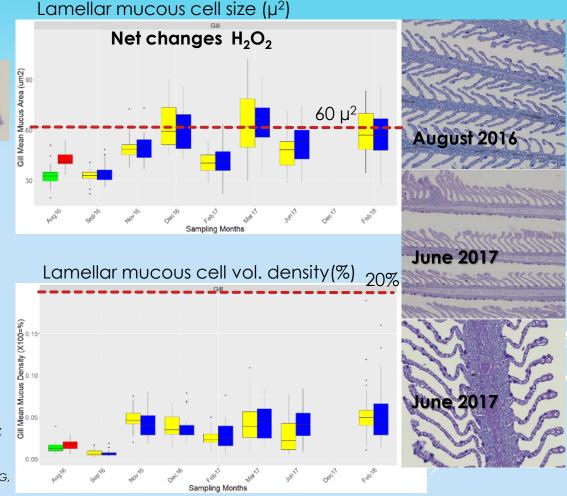
(Table modified from Dang et al. 2020, Table 4).

GENERATION STUDY

GILLS

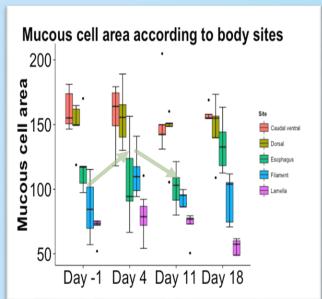
Freshwater

Origin differences


<u>Seawater</u>

Reacts to net changes, particles, delousing

Significant differences within gill score 0-1


n=30-45 under each box 2 treatments in triplicate

WITH MARINE HARVEST, SKRETTING, FHF, IMR, NIFES OG QUANTIDOC

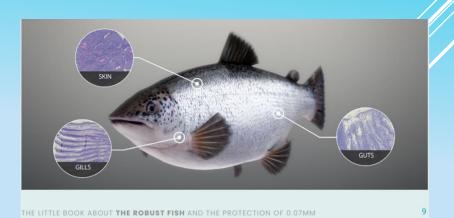
Standards allow Comparable Responses across time, treatment and trials:

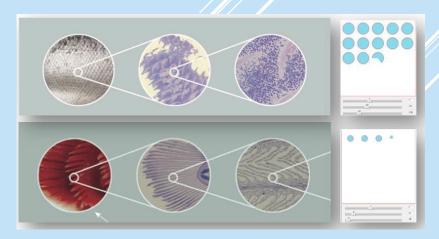
- 1. Gills show delayed reaction, peaking a few days after stressor
- 2. Require 2-3 weeks to return to «normal»
- 3. Gill lamellae and gill filament are **2 distinct mucous barriers**


From Rantty I, 2016
Gill Heqlith Confine class delousing with hydrogen peroxide
• Seacage n=22 fish

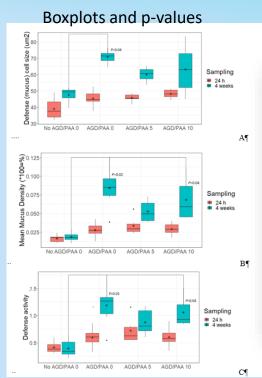
From Haddeland S, 2019

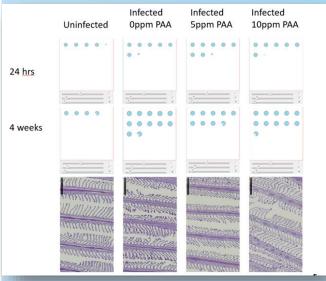
- 2.4 ppm PAA in seawater –RAS
- n=60 fish



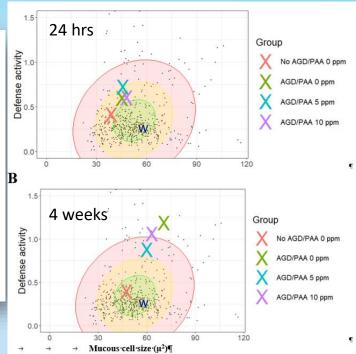

Mucosal barrier health – the Dicer v2 to compensate

Svendsen & Bøgwald 1997


Gill Health Initiative Oct 2023

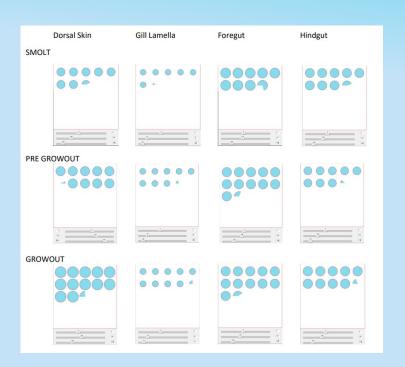

Amoebic Gill Disease increases mucous production within 24 hrs

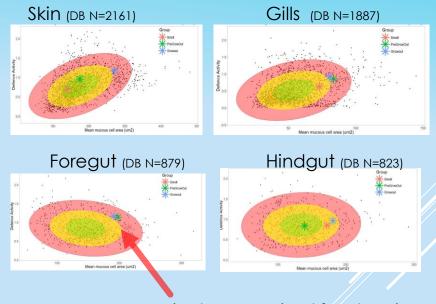
- Treating with twice the dose Peracetic Acid (PAA) is half as good at 4 weeks

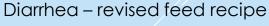


24 Ilhes Ith Initiative Actions ks

Dicer illustrations of gill lamellar mucous cells and histological sections

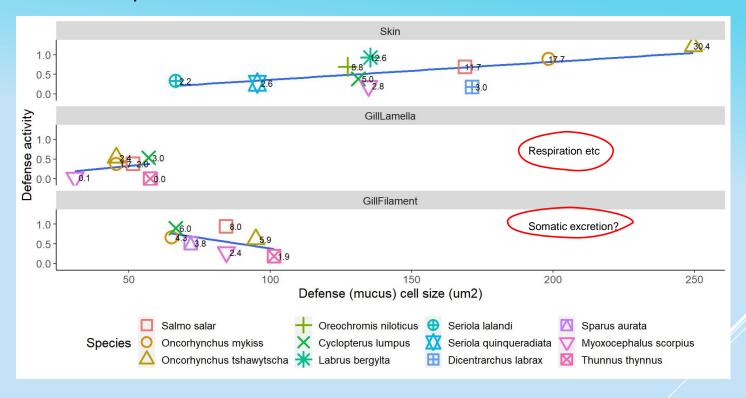


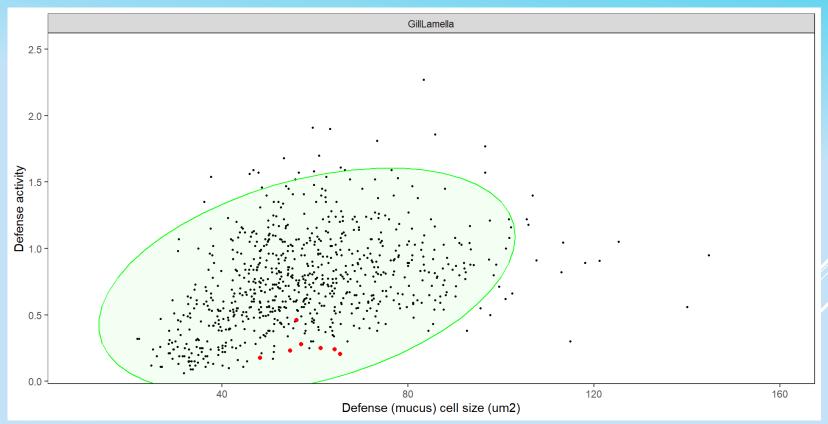

Mean results against Veribarr database



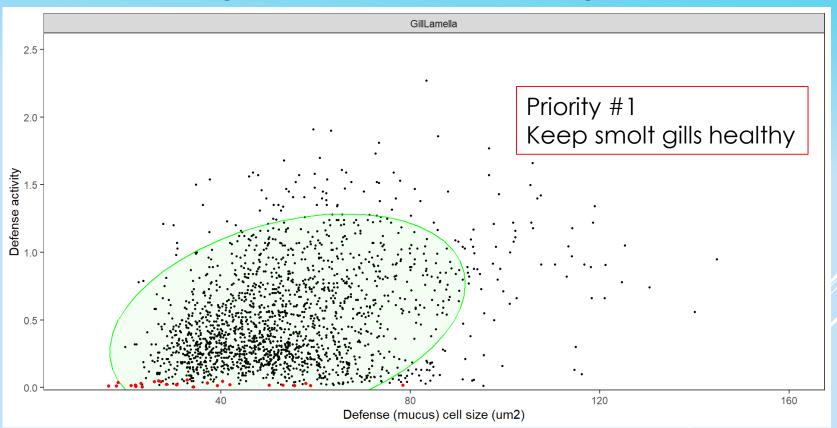
from Lazado et al. 2022. Immunity and stress associated with the infestation of the parasite Neoparamoeba perurans are differentially shaped by a potent oxidant in Atlantic salmon (Salmo salar)

Mucosal responses in multiple tissues for 3 stages in RAS Dicer images and Veribarr database comparison




Results across 12 species

The variation in MC size (µm²) in epithelia and calculated MC defense activity of the tissue (1000/(MC size / MC volumetric density) for 12 fish species. MC volumetric densities in the epithelia (%) are presented as labels.


From: Merkin et al (in prep) Revising current understanding of the mucosal interface in fish based on the quantitative pattern of mucous cell production in the skin and gills of Atlantic salmon and 11 other fish species

Wild adult salmon gill lamellae vs seabased farmed salmon

Gill Health Initiative Oct 2023

Wild salmon smolt gill lamellae vs farmed salmon gill lamellae

DON'T JUST COUNT: CELL SIZE MATTERS!

5 cells with radius 9.77 microns vs 5 cells with radius 2.5 microns

= 58 times more volume (cytosol) and 15 times more cell membrane

2		Surface area	Volume		Surface area in	Volume in
AREA (μ²)	RADIUS μ	sphere (μ²)	sphere (μ³)	OF CELLS	unit (µ2)	unit (µ3)
20	2.52313252	80	67,2835339	5	400	336,41767
		80	67,2835339	10	800	672,83534
50	3,9894228	200	265,96152	5	1000	1329,8076
		200	265,96152	10	2000	2659,6152
100	5,64189584	400	752,252778	5	2000	3761,2639
		400	752,252778	10	4000	7522,5278
150	6,90988299	600	1381,9766	5	3000	6909,883
		600	1381,9766	10	6000	13819,766
200	7,97884561	800	2127,69216	5	4000	10638,461
		800	2127,69216	10	8000	21276,922
250	8,92062058	1000	2973,54019	5	5000	14867,701
		1000	2973,54019	10	10000	29735,402
300	9,77205024	1200	3908,8201	5	6000	19544,101
		1200	3908,8201	_	12000	39088,201

Gills

Guts

Skin

CELL SIZE MATTERS:

5 cells with radius 9.77 microns vs 5 cells with radius 2.5 microns

- = 58 times more volume (cytosol)
- = 15 times more cell membrane

Major metabolic pathways that occur in the **cytosol** in animals: protein biosynthesis, pentose phosphate pathway, glycolysis and gluconeogenesis

Goblet cell Secretory vesicles with mucin Golgi Rough apparatus endoplasmic reticulum Nucleus Mitochondrion

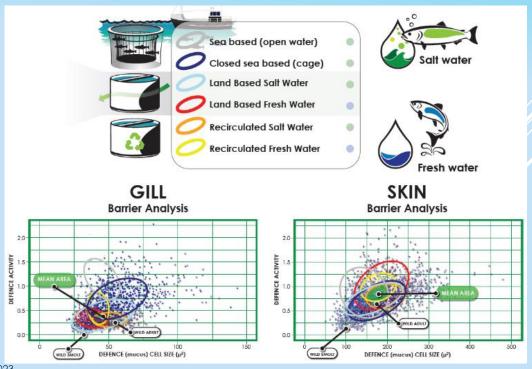
3 mucin types:

trans-membrane MUC1, MUC4, MUC16 secreted (gel-forming) MUC2, MUC5AC, MUC6 soluble (non-gel-forming) MUC7, MUC8, MUC9, MUC20

- critical in maintaining cellular functions, particularly those of epithelial surfaces.

Animal cell diagram

Components of a typical animal cell:

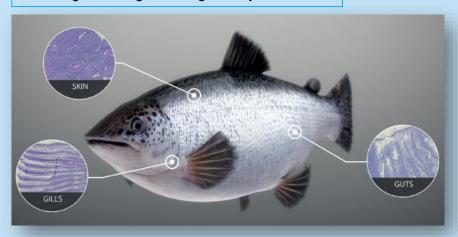

- 1. Nucleolus
- 2. Nucleus
- 3. Ribosome (dots as part of 5)
- 4. Vesicle
- 5. Rough endoplasmic reticulum
- 6. Golgi apparatus (or, Golgi body)
- 7. Cytoskeleton
- 8. Smooth endoplasmic reticulum
- 9. Mitochondrion
- 10. Vacuole
- Cytosol (fluid that contains organelles; with which, comprises cytoplasm)
- 12. Lysosome
- 13. Centrosome
- 14. Cell membrane

Requirements of standards

- 1. Early detection of infectious and non-infectious disease depends on routine surveillance and knowledge of **fish's biology** (aquaculture ≠ agriculture underwater)
- 2. Account for: risk factors, frequency of surveillance, number of samples
- 3. Acceptable limiting values: vary by life stage, environment, production activities
- 4. Industrially scalable and comparable
- 5. Important factors: sampling strategy and detection tools

Standardization increases understanding and control of barrier health

Veribarr[™] salmon database from 2018 (Skin N=~2000 Gills N=~1000)



The FISH DETECTIVE using Veribarr™ An industrial standard

SKIN = SHIELD

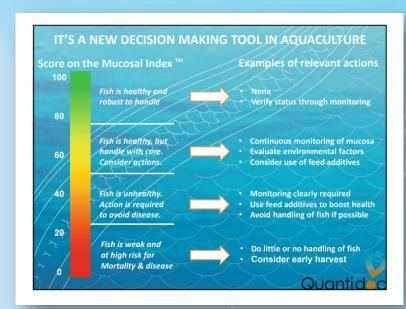
Reflects surface contacts: tank and cage walls, crowding, handling, stocking density

GILLS = SENTINEL GUARD

Reflects stress, water quality, particles, pathogens 50% of fish surface area – earliest warning!

Database on 13 arter:

Works on:

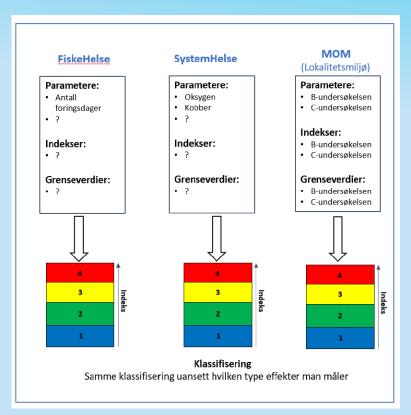

Salmon, trout, yellowtail, seabass, seabream, tilapia, A

All fish species
All systems

lumpfish, wrasse, tuna, barramundi

Database on 7 systems

RAS and Flowthrough; open and closed cages; SW and FW, Wild fish in nature



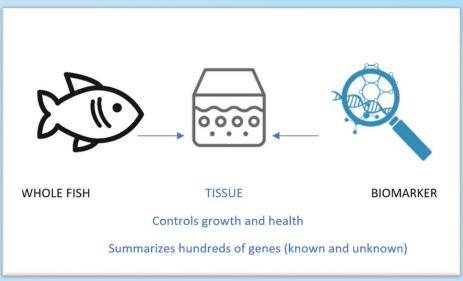
GUT = FOUNDATION

Responds to stress, feeds and water

Announcing FishMOM- a framework for decision-making in aquaculture

Sketch of the FishMOM concept for concept development, anchoring and consortium creation.

The MOM column is **Miljøo**vervåking av **m**atfisk (**NS9410**), a risk-based system for site environment which has been in use on ALL Norwegian fish farms since 2005.


By applying the principles and concepts from MOM to the 2 other columns, the fragmented knowledge of fish- and system health (farm system &technology) we develop a tool with flexible monitoring frequency and variable mitigations depending on exploitation level.

The FishMOM consortium will identify parameters, indexes and suggest limiting values for the columns
Fish Health and System Health

Join us! Focus groups spring 2024!

Proposers: Aquacloud, HVL, NCE Seafood, IMR, UiB, UiS, VetInst

An external membrane 0.07 mm thick protects fish health: the mucous membranes of skin, guts and gills

